Premium
Porous polyurethane film fabricated via the breath figure approach for sustained drug release
Author(s) -
Daban Gizem,
Bayram Cem,
Bozdoğan Betül,
Denkbaş Emir Baki
Publication year - 2019
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.47658
Subject(s) - materials science , polyurethane , porosity , chemical engineering , wetting , solvent , fabrication , casting , relative humidity , polymer , membrane , composite material , chemistry , organic chemistry , medicine , biochemistry , alternative medicine , physics , pathology , engineering , thermodynamics
The breath figure (BF) method is an effective process for fabricating porous polymeric films. In this study, we fabricated porous polymer films from thermoplastic polyurethane (PU) through static BF with CHCl 3 as a solvent under 55–80% relative humidity. The porous PU films were prepared within various pore structures and sizes, which were adjustable, depending on the fabrication conditions. The humidity and exposure time were examined as variable parameters affecting the surface morphology, wettability, and cytotoxicity. Atorvastatin calcium, a hyperlipidemic agent, was loaded into the porous films during the casting process, and the drug‐loading and drug‐releasing behaviors of the porous PU membranes were evaluated. Approximately 60–80% of the drug was released in 14 days. The films exhibited sustained drug‐release performances because of the hydrophobicity and nonbiodegradable nature of PU for perivascular drug administration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136 , 47658.