Premium
Discontinuous carbon fiber/polyamide composites with microencapsulated paraffin for thermal energy storage
Author(s) -
Fredi Giulia,
Dorigato Andrea,
Unterberger Seraphin,
Artuso Nicolò,
Pegoretti Alessandro
Publication year - 2019
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.47408
Subject(s) - materials science , composite material , polyamide , compounding , phase change material , ultimate tensile strength , dynamic mechanical analysis , crystallization , fiber , thermal energy storage , thermal conductivity , thermal , polymer , chemical engineering , ecology , physics , meteorology , engineering , biology
This work focuses on the development of multifunctional thermoplastic composites with thermal energy storage capability. A polyamide 12 (PA12) matrix was filled with a phase change material (PCM), constituted by paraffin microcapsules ( T melt = 43 °C), and reinforced with carbon fibers (CFs) of two different lengths (chopped/CF “long”[CFL] and milled/CF “short” [CFS]). DSC tests showed that the melting/crystallization enthalpy values increase with the PCM weight fraction up to 60 J/g. The enthalpy was 41–94% of the expected value and decreased with an increase in the fiber content, because the capsules were damaged by the increasing viscosity and shear stresses during compounding. Long CFs increased the elastic modulus (+316%), tensile strength (+26%), and thermal conductivity (+54%) with respect to neat PA12. Thermal imaging tests evidenced a slower cooling for the samples containing PCM, and once again the CFS‐containing samples outperformed those with CFL, due to the higher effective PCM content. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136 , 47408.