z-logo
Premium
Continuous and high throughput production of alginate fibers using co‐flow in a millifluidic T‐junction
Author(s) -
Pendyala G.,
Bithi S. S.,
Vanapalli S. A.,
Fernandes G. E.
Publication year - 2019
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.47120
Subject(s) - fiber , materials science , volumetric flow rate , calcium alginate , composite material , production rate , extrusion , flow (mathematics) , chemical engineering , calcium , process engineering , mechanics , physics , engineering , metallurgy
We present a new technique for continuous production of alginate fibers using off‐the‐shelf millifluidic components and syringe pumps. The components are quickly assembled to form a T‐junction to deliver co‐flowing streams of sodium alginate and calcium chloride allowing formation of hydrogel fibers in the exit channel. We vary the flow rates of the two streams, calcium chloride concentrations and length of exit channel and identify conditions where fibers of uniform and nonuniform thickness are produced. We find that uniform fibers can be produced at a maximum total flow rate of 10 mL min −1 . As expected, for uniform fibers, we observe that the fiber diameter increases with increase in alginate solution flow rate, and we propose a simple model that predicts the fiber diameter as a function of flow rate ratio. We investigate the source of fiber nonuniformity and explain it using an empirical model that involves crosslinking time and gel strength. Our approach features easy device assembly and operation and enables continuous fiber production without clogging risks. Fiber production rates in the order of 10 m min −1 are achievable using our approach. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136 , 47120.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here