z-logo
Premium
Reduced graphene oxide (RGO)‐induced compatibilization and reinforcement of poly(vinylidene fluoride) (PVDF)–thermoplastic polyurethane (TPU) binary polymer blend
Author(s) -
Bera M.,
Saha U.,
Bhardwaj A.,
Maji P. K.
Publication year - 2019
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.47010
Subject(s) - materials science , compatibilization , thermoplastic polyurethane , composite material , ultimate tensile strength , oxide , graphene , polymer blend , thermal stability , polymer , chemical engineering , elastomer , copolymer , metallurgy , nanotechnology , engineering
ABSTRACT Compatible blends of nonreactive thermoplastic fluoropolymer, poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) at 70/30 weight ratio, were prepared by utilizing the unique structural feature of reduced graphene oxide (RGO). Here, RGO acts as a compatibilizer as well as a reinforcing filler. RGO interacts with both polymers and reduces the interfacial tension between them, leading to compatibilization. RGO content in the blends was varied from 0 to 0.5 wt %, and the best result was found at 0.3 wt % loading. Excellent compatibilization between PVDF and TPU was established by mechanical, morphological, and thermal property studies. Chemical interaction between the RGO/TPU and RGO/PVDF was proved by FTIR–ATR study. With the incorporation of 0.3 wt % RGO, tensile strength, Izod impact strength, and elongation at break of the blend were increased by 42%, 83%, and 43%, respectively. FESEM and AFM images of blends without loading of filler after etching out of TPU phase show nonuniformly distributed hole morphology. RGO‐containing blend has shown much finer and uniformly distributed holes that confirm improved compatibility between the two incompatible polymers. RGO also improves the thermal stability of the compatible blends considerably. At 0.3 wt % loading, the onset of thermal degradation increased by about 10 °C. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136 , 47010.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here