Premium
Synergistic effect of dual nanofillers (MWCNT and Ni–Al LDH) on the electrical and thermal characteristics of polystyrene nanocomposites
Author(s) -
Sen Payel,
Pugazhenthi G.
Publication year - 2018
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.46513
Subject(s) - nanocomposite , materials science , polystyrene , carbon nanotube , fourier transform infrared spectroscopy , thermal stability , chemical engineering , composite material , polymer , dispersion (optics) , physics , optics , engineering
The advantage of using 3D hybrid filler containing carboxylic acid functionalized multiwalled carbon nanotubes (c‐MWCNTs) and sodium dodecyl sulfate modified Ni–Al layered double hydroxide (sN‐LDH) over c‐MWCNTs and sN‐LDHs acting alone was investigated. PS/c‐MWCNT composites proved to be good for improvement of properties, but not to an appreciable level, especially in case of electrical conductivity, flame retardancy, rheology, and water vapor permeability. Hence, a combination of 0.3 wt % of c‐MWCNT and 3 wt % of sN‐LDH was optimized as additives to assist in the full expression of the filler traits in the nanocomposite and to obtain a versatile nanocomposite with properties specific to both the fillers. This approach slightly decreases the dispersion challenge faced with handling high loadings of CNT and also the intrinsic limitations specific to the individual fillers (i.e., inertness of CNTs and low conductivity of LDHs). Moreover, the anion/anionic repulsion of organically modified CNT/LDH facilitates effective dispersion of the additive opposing adhesion. FTIR and Raman spectroscopy provided evidence for incorporation and proper dispersion of the additives in the polymer matrix, with XRD and TEM confirming a well‐dispersed morphology of the nanocomposites. In this work, focus is made on the improvement of thermal stability, flame retardancy, melt rheology, hardness, electrical conductivity, and water vapor permeability of PS/0.3 wt % c‐MWCNT/3 wt % sN‐LDH nanocomposites over PS/0.3 wt % c‐MWCNT, making use of the synergistic effect of c‐MWCNT coupled with sN‐LDH on polystyrene. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135 , 46513.