Premium
Gamma radiation aging of EVA / EPDM blends: Effect of vinyl acetate ( VA ) content and radiation dose on the alteration in mechanical, thermal, and morphological behavior
Author(s) -
Sharma Bhuwanesh Kumar,
Krishnanand Kumar,
Mahanwar P.A.,
Sarma K.S.S.,
Ray Chowdhury Subhendu
Publication year - 2018
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.46216
Subject(s) - compression set , materials science , ethylene vinyl acetate , composite material , compression molding , ultimate tensile strength , elastomer , elongation , vinyl acetate , irradiation , polymer chemistry , nuclear chemistry , copolymer , natural rubber , polymer , chemistry , mold , physics , nuclear physics
A series of ethylene vinyl acetate (EVA)/ethylene‐propylene diene elastomer (EPDM) blends (50/50 ratio) with four types of EVAs were prepared using brabender type batch mixer followed by compression molding. All compression‐molded samples were exposed to gamma radiation at 500, 1000, and 1500 kGy doses and were subjected to mechanical, compression set, thermal and morphological test. The % retention in tensile strength, elongation, and hardness were found higher for higher vinyl acetate (VA) containing radiation aged EVA/EPDM blends. The compression set value was decreased with increase of VA content. The thermal degradation kinetics of high VA containing irradiated blend (EVA40/EPDM) (EVA40 is 40%VA containing EVA) was found slower than those of lower VA containing blend (EVA18/EPDM). The surface morphology for EVA18/EPDM sample was transformed into more irregular one with more cracks and fragmented segments by aging at 1500 kGy dose while surface for EVA40/EPDM sample was found comparatively smooth, fine, and continuous with very few cracks and fragmented parts at similar dose. Thus, from the measured properties and morphology, it was revealed that the degree of degradation of blends kept on decreasing with increase in VA content. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135 , 46216.