Premium
Hot‐melt adhesives based on co‐polyamide and multiwalled carbon nanotubes
Author(s) -
LatkoDurałek Paulina,
Macutkevic Jan,
Kay Christopher,
Boczkowska Anna,
McNally Tony
Publication year - 2018
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.45999
Subject(s) - materials science , composite material , percolation threshold , carbon nanotube , rheology , mass fraction , nucleation , composite number , adhesive , nanotube , polyamide , chemistry , organic chemistry , layer (electronics) , electrical engineering , electrical resistivity and conductivity , engineering
ABSTRACT Composites of two hot melt adhesives based on co‐polyamides, one high viscosity (coPA_A), the other low viscosity (coPA_B), and multiwalled carbon nanotubes (MWCNTs) were prepared using twin‐screw extrusion via dilution of masterbatches. Examination of these composites across the length scales confirmed that the MWCNTs were uniformly dispersed and distributed in the polymer matrices, although some micron size agglomerations were also observed. A rheological percolation was determined from oscillatory rheology measurements at a mass fraction of MWCNTs below 0.01 for coPA_B and, between 0.01 and 0.02 for coPA_A. Significant increases in complex viscosity and storage modulus confirmed the “pseudo‐solid” like behavior of the composite materials. Electrical percolation, determined from dielectric spectroscopy was, found to be at 0.03 and 0.01 MWCNT mass fraction for coPA_A and coPA_B based composites, respectively. Addition of MWCNTs resulted in heterogeneous nucleation and altered the crystallization kinetics of both copolymers. Indirect evidence from contact angle measurements and surface energy calculations confirmed that MWCNT addition enhanced the adhesive properties of coPA_B to a level similar to coPA_A. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135 , 45999.