Premium
Preparation and characterization of a superabsorbent slow‐release fertilizer with sodium alginate and biochar
Author(s) -
Baki M.,
AbediKoupai J.
Publication year - 2018
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.45966
Subject(s) - ammonium persulfate , copolymer , biochar , nuclear chemistry , chemistry , self healing hydrogels , acrylic acid , polymer chemistry , acrylamide , grafting , fourier transform infrared spectroscopy , materials science , polymerization , chemical engineering , pyrolysis , organic chemistry , polymer , engineering
A novel hydrogel was synthesized through the graft copolymerization of acrylic acid (AA) and acrylamide (AM) onto sodium alginate with ammonium persulfate as the initiator, methylene bisacrylamide as the crosslinking agent, and calcium chloride as the precipitating agent. Rapeseed meal biochar made at 300 °C was also used. A series of graft copolymers with various molar ratio of AA to AM was prepared. The structures of the hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The free absorbency and rate of release were investigated. The grafting efficiency increased as the concentration of AM increased. There was a considerable percentage of nitrogen in the graft copolymers, and the release rate of nitrogen from fertilizer in soil and water decreased with increasing concentration of AM. The water retention of soil without hydrogel remained at 63 and 53.4% on the 10th and 20th days, but with the hydrogels, it was above 70% even on the last day. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135 , 45966.