z-logo
Premium
pH‐sensitive polymeric particles as smart carriers for rebar inhibitors delivery in alkaline condition
Author(s) -
Feng Lijuan,
Yang Huaiyu,
Dong Xiqing,
Lei Haibo,
Chen Di
Publication year - 2018
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.45886
Subject(s) - rebar , drug delivery , materials science , swelling , polymer , acrylic acid , chemical engineering , drug carrier , nanotechnology , composite material , monomer , engineering
ABSTRACT The waste problem of the rebar inhibitors is very serious due to that it is a long time before they can exert their best effect in the concrete and they are kept losing all the time. However, there is still no effective solution to alleviate such situation. Meanwhile, drug delivery control technology based on environmental sensitive polymers has been successfully applied in biomedical fields. Thus, poly(acrylic acid)–acrylamide was synthesized as smart carrier for controlling rebar inhibitors delivery in concrete. Dipotassium hydrogen phosphate as model drug was encapsulated inside the polymeric particles via a self‐assembly process. The pH‐responsive activities of the polymeric particles were estimated by monitoring their swelling performances in solutions of different pH values and the drug delivery control characteristics were studied in simulated concrete pore solutions. The results indicate the polymeric particles deserve network structures with high porosity and exhibit excellent pH‐responsive activities, which can perform as perfect intelligent carriers whereas the releasing of the inhibitors follows the first‐order kinetic law. The work suggests a new application field of drug delivery control technology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135 , 45886.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here