z-logo
Premium
Mechanical, thermal, and hydrophobic properties of silica aerogel–epoxy composites
Author(s) -
Maghsoudi Khosrow,
Motahari Siamak
Publication year - 2018
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.45706
Subject(s) - aerogel , composite material , epoxy , materials science , composite number , hydrophobic silica , thermal stability , thermal conductivity , toughness , brittleness , chemical engineering , engineering
Epoxy composites were prepared with different contents of hydrophobic silica aerogel particles to investigate their mechanical, thermal, and hydrophobic properties. The composites, particularly the one containing 1 wt % silica aerogel, showed remarkable toughness and yielding behaviors compared to neat epoxy, with its brittle behavior. As the content of silica aerogel increased, the thermal properties of the composites (e.g., thermal conductivity and thermal stability) improved. This was due to the very low thermal conductivity and high thermal stability of the silica aerogel particles. Moreover, the use of the hydrophobic silica aerogel led to the development of composites with hydrophobic properties. To examine the hydrophobicity more deeply, a series of water‐uptake tests were performed, and the results show that the composite with 3 wt % silica aerogel absorbed 50% less water than the neat epoxy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135 , 45706.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here