Premium
Effect of solvent quality and humidity on the porous formation and oil absorbency of SAN electrospun nanofibers
Author(s) -
Bandegi Alireza,
Moghbeli Mohammad Reza
Publication year - 2018
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.45586
Subject(s) - materials science , nanofiber , electrospinning , chemical engineering , tetrahydrofuran , polymer chemistry , sorption , copolymer , solvent , spinning , acrylonitrile , porosity , relative humidity , dimethylformamide , polymer , composite material , chemistry , adsorption , organic chemistry , physics , engineering , thermodynamics
ABSTRACT In this study, nanofibrous mat with high oil sorption capability was prepared via one‐step electrospinning process without any further post‐treatments. For this purpose, the fabrication of styrene/acrylonitrile copolymer nanofibers was carried out using various dimethylformamide (DMF)/tetrahydrofuran and DMF/ethanol (DMF/EtOH) binary mixture ratios in an electrospining atmosphere with various relative humidity (RH) levels. Scanning electron microscope micrographs showed that DMF/tetrahydrofuran and DMF/EtOH ratio and RH value could considerably affect the diameter, surface, and interior morphology of the resultant nanofibers. The nanofiber morphology was dependent upon the polymer/solvent(s)/water ternary phase diagram behavior. In overall, the partial hydrophilicity of styrene/acrylonitrile copolymer resulted in electrospun nanofibers with wrinkled surface. In addition, the incorporation of nonsolvent in the spinning solution and using high RH atmosphere forced the polymeric solution jet to intensively phase separate and, therefore, produce the nanofibers with highly interior porous structure during drying process. The maximal capacity and rate of oil sorption (170 g/g) was observed for the nanofibrous mat prepared using EtOH/DMF (2/3: vol/vol) and RH value of 60% showing the highest internal porosity. The results showed that the oil sorption capability and mechanical strength of the fibrous mat are strongly dependent on nanofibers diameter and porous structure, which can be controlled through adjusting the RH and spinning solvent quality. The electrospun mat with highest Young's modulus (7.68 MPa) was prepared using EtOH/DMF (2/3) binary mixture and RH value of 45%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135 , 45586.