z-logo
Premium
Salmon calcitonin‐loaded PLGA microspheres/calcium phosphate cement composites for osteoblast proliferation
Author(s) -
Wu Ruixue,
Ma Bin,
Zhou Qiang,
Tang Cui
Publication year - 2017
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.45486
Subject(s) - plga , calcium phosphate cement , osteoblast , calcium , materials science , scanning electron microscope , calcitonin , biomedical engineering , chemistry , composite material , cement , nuclear chemistry , in vitro , nanoparticle , nanotechnology , medicine , biochemistry , metallurgy
To improve the efficacy of salmon calcitonin (SCT) on disuse osteoporosis‐induced bone fracture, the sustained‐release vehicles delivered to bone fractures should be developed. In this study, SCT‐loaded poly( d , l ‐lactic‐ co ‐glycolic acid) microspheres (SCT‐PLGA MS) with 20 kDa‐COOH and 40 kDa‐COOH (SCT‐PLGA‐20 COOH MS and SCT‐PLGA‐40 COOH MS) are incorporated into calcium phosphate cement (CPC) at various mass ratios. The cumulative release and mechanical properties of SCT‐PLGA MS/CPC composites decrease as PLGA MS/CPC mass ratio increase. Scanning electron microscopy images and the mass loss of composites indicate the MS from 20% SCT‐PLGA MS/CPC composites have mostly degraded after 8 weeks. In addition, SCT released from the 20% SCT‐PLGA‐20 MS/CPC composites significantly facilitate proliferation and differentiation of MC3T3‐E1 cells. In conclusion, 20% SCT‐PLGA‐20 COOH MS/CPC composites exhibit the sustained drug release, proper CPC degradation, good mechanical properties, and preferable osteoblast proliferation, which would be beneficial to their in vivo applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45486.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here