Premium
Polypropylene/multiwall carbon nanotubes nanocomposites: Nanoindentation, dynamic mechanical, and electrical properties
Author(s) -
Chafidz Achmad,
Rengga Wara Dyah Pita,
Khan Rawaiz,
Kaavessina Mujtahid,
Almutlaq Abdulaziz M.,
Almasry Waheed A.,
Ajbar Abdelhamid
Publication year - 2017
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.45293
Subject(s) - materials science , nanoindentation , nanocomposite , carbon nanotube , composite material , creep , polypropylene , dynamic mechanical analysis , polymer
Polypropylene (PP)/Multiwall carbon nanotubes (MWCNTs) nanocomposites were fabricated via melt compounding that utilizes a corotating twin‐screw extruder. Two commercially available MWCNTs, Baytubes C150P and C70P, were incorporated into PP matrix at concentration of 3 wt %. The nanocomposites samples were analyzed using scanning electron microscopy, dynamic mechanical analysis (DMA), nanoindentation test, and picoammeter. It was found that both MWCNTs types were well distributed and dispersed in the PP matrix and no agglomeration of MWCNTs was observed. The DMA analysis results showed that the incorporation of MWCNTs enhanced the storage modulus and thermal stability of the PP matrix. Whereas, nanoindentation creep results showed that the creep rate and displacement of the PP/MWCNTs nanocomposites was lower than the neat PP, in which C70P < C150P < PP. The reduction of creep rate and creep displacement was associated to the improvement of creep resistance. There were also improvements on hardness and stiffness of the nanocomposites. Additionally, the electrical resistivity of the neat PP decreased with the incorporation of MWCNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45293.