Premium
Core–shell hexadecane‐polyurethane nanofiber/net structured membrane: Evaluation of surfactant addition on morphology and performance
Author(s) -
Rahimi Massoumeh,
Mokhtari Javad
Publication year - 2017
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.45047
Subject(s) - membrane , nanofiber , materials science , pulmonary surfactant , chemical engineering , polyurethane , composite material , cationic polymerization , hexadecane , morphology (biology) , polymer chemistry , chemistry , organic chemistry , biochemistry , biology , engineering , genetics
Coelectrospinning/netting or fabrication of well‐controlled nanofibers/net (NFN) within core–shell hexadecane (HD)–polyurethane (PU) nanofiber membranes is an effective strategy to improve nanostructure morphology, mechanical properties, and performance characteristics. Three types of surfactants were separately added to PU solutions in order to make controlled NFN layers within membrane structures. The experimental results indicated that the NFN layers composed of core–shell nanowires with a diameter of 20–40 nm increased significantly when a cationic surfactant was added. Also, the results confirmed that the NFN structure caused a significant increase in strength and a noticeable decrease in elongation of the membranes. The performance characteristics of the membranes, such as water vapor transmission rate and hydrostatic pressure, were not affected significantly by the addition of the cationic surfactant. The results confirmed that the mechanical properties and morphology of the core–shell HD‐PU nanofiber membranes could be controlled and tuned by the amount and type of surfactant. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45047.