Premium
Understanding the relation between structural and mechanical properties of electrospun fiber mesh through uniaxial tensile testing
Author(s) -
Kumar Prasoon,
Vasita Rajesh
Publication year - 2017
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.45012
Subject(s) - materials science , ultimate tensile strength , composite material , electrospinning , fiber , polygon mesh , tensile testing , toughness , polymer , geometry , mathematics
Polymeric electrospun fibers have the potential to be utilized for a variety of applications such as tissue engineering, filtration, and textiles, owing to their high surface area per unit mass. However, these applications have some form of dependency on the mechanical properties of fiber meshes. Therefore, the current study is aimed at understanding the mechanical behavior of electrospun fiber systems at different length scales in order to establish a correlation between their structure and mechanical properties. Micro‐/nano‐fiber meshes of polystyrene were fabricated by the process of electrospinning and were subjected to uniaxial tensile testing. High‐resolution imaging during tensile testing revealed the macroscopic and microscopic structural evolution of these fibers. Further, the dependence of tensile strength, % elongation, and toughness of fiber meshes on the orientation of the fibers were also experimentally observed. The continuum mechanics simulation studies of fiber meshes with different orientations corroborated well with these experimental studies. Comprehensively, these studies demonstrated the changes in mechanical behavior of electrospun fiber meshes owing to the reorientation and alignment of fibers in meshes at microscopic and macroscopic length scale during tensile testing. Such study can be extrapolate for the design and fabrication of load‐bearing tissues scaffolds, and filtration devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45012.