Premium
Flexible epoxy novolac coatings: Use of cardanol‐based flexibilizers
Author(s) -
Gour Rajeshwari S.,
Raut Kundalik G.,
Badiger Manohar V.
Publication year - 2017
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.44920
Subject(s) - cardanol , materials science , epoxy , dynamic mechanical analysis , composite material , curing (chemistry) , ultimate tensile strength , chemical resistance , coating , diluent , polymer , nuclear chemistry , chemistry
Flexible epoxy novolac coatings were developed by reacting an epoxy novolac resin, poly[(phenylglycidyl ether)‐ co ‐formaldehyde] (PPGEF) with an amine curing agent, 4,4′‐diamino‐3,3′‐dimethyldicyclohexyl methane (BMCHA), cardanol based reactive diluent (Cardolite NC‐513) and two different cardanol‐based flexibilizers (Cardolite NC‐514 and Cardolite NC‐547). The flexibilizer content was varied from 5 to 10% by weight of the resin. These resins were coated onto the stainless steel panels and tested for their gloss, cross‐hatch adhesion, falling weight impact resistance, flexibility, abrasion, scratch hardness, solvent scrub resistance, and chemical resistance. The thermo‐mechanical properties of these coatings were determined by TGA, DSC, DMTA, and tensile strength measurements. The cryofractured specimens were subjected to SEM analysis. The influence of structural differences of two flexibilizers on the coating properties was investigated. These coatings exhibited excellent properties and have great potential in industrial applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44920.