Premium
Preparation and properties of poly(ε‐caprolactone) self‐reinforced composites based on fibers/matrix structure
Author(s) -
Han Lei,
Xu Hong,
Sui Xiaofeng,
Zhang Linping,
Zhong Yi,
Mao Zhiping
Publication year - 2017
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.44673
Subject(s) - materials science , composite material , ultimate tensile strength , scanning electron microscope , hot pressing , polymer , tensile testing , reinforcement , modulus , matrix (chemical analysis)
Self‐reinforced poly(ε‐caprolactone) (PCL) composites were prepared from bi‐component PCL yarns composed of PCL drawn fibers and PCL matrix by a combined process of yarns winding and hot‐pressing. Series of PCL polymers with different melting points were synthesized and used as matrix. PCL melt‐spun fibers were subject to different draw ratios and functioned as reinforcement. During the process of hot‐pressing, the matrix with low melting points melted and bonded the unmelted drawn fibers together creating self‐reinforced composites, the morphologies of which were examined by scanning electron microscope. Tensile testing of the composites was performed along the longitudinal and transverse directions separately. The longitudinal tensile test results showed that the Young's modulus and strength at break of the self‐reinforced composites were 59% and 250% higher than that of pure PCL. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44673.