Premium
Synthesis of tris(2‐hydroxyethyl) isocyanurate homopolymer and its application in intumescent flame retarded polypropylene
Author(s) -
Gao Shang,
Zhao Xuan,
Liu Gousheng
Publication year - 2017
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.44663
Subject(s) - intumescent , ammonium polyphosphate , charring , char , fire retardant , polypropylene , materials science , polymer chemistry , fourier transform infrared spectroscopy , thermal decomposition , cone calorimeter , thermal stability , chemical engineering , pyrolysis , composite material , chemistry , organic chemistry , engineering
A macromolecular homopolymer (named as Homo‐THEIC) was synthesized through self‐etherification of tris(2‐hydroxyethyl) isocyanurate (THEIC) molecules and used as charring agent. Its chemical structure was characterized by FTIR and 13 C‐NMR. The charring agent was mixed with ammonium polyphosphate (APP) and applied in flame retarded polypropylene (PP). Results of UL‐94, LOI, and cone calorimeter test showed that the LOI of flame retarded PP can reach 32.8% and UL‐94 V‐0 rating can be achieved at 30 wt % loading. The heat release rate and smoke production rate during the combustion of PP were substantially reduced. TGA results indicated that the synergistic effect between APP and Homo‐THEIC existed and the addition of intumescent flame retardant (IFR) dramatically enhanced the thermal stability of PP. According to the results of TGA, SEM, TG‐FTIR, FTIR, and Raman, the char forming process of IFR can be separated into three stages: the formation of viscous phosphate ester ( T onset −330 °C), the expanding process along with the decomposition of phosphate ester and the release of a large amount of gases (330–480 °C), and the final formation of graphitic‐like char without any expanding feature (480–670 °C). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44663.