z-logo
Premium
A novel preparation method of polyaluminum chloride/polyacrylamide composite coagulant: Composition and characteristic
Author(s) -
Wang Xiaoping,
Tang Xiaomin,
Feng Ping,
Li Xinyu,
Zhao Chuanliang,
Chen Wei,
Zheng Huaili
Publication year - 2017
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.44500
Subject(s) - polyacrylamide , monomer , chemistry , composite number , thermal stability , intrinsic viscosity , polymer chemistry , thermogravimetric analysis , urea , acrylamide , chemical engineering , copolymer , polymerization , nuclear chemistry , materials science , organic chemistry , polymer , composite material , engineering
Inorganic/organic composite coagulants have drawn a wide attention through the years owing to its superior coagulation behaviors. In this study, polyaluminum chloride (PAC)/polyacrylamide (PAM) composite coagulant was synthesized by ultraviolet (UV) irradiation by using PAC and acrylamide (AM) as raw materials, urea as a solubilizer, and 2,2′‐Azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) as an initiator. The effect of total monomer mass fraction, solubilizer dosage and initiator dosage on the viscosity and molecular weight of PAC/PAM composite coagulant was discussed. The results suggest that the composite coagulant with high polymerization degree, intrinsic viscosity of 1483 mL/g and molecular weight of 7.38 million, could be obtained when the total monomer mass fraction of 40%, urea dosage of 1.5% and initiator dosage of 0.6% are chosen in the preparation. It is a potential preparation method of composite coagulant with short preparation time and high preparation efficiency. Fourier transform infrared spectrum and 1 H nuclear magnetic resonance spectroscopy represent that the coagulant for polyaluminum chloride and polypropylene are copolymer. Thermal gravimetric analysis describes the high thermal stability of composite coagulant. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44500.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom