z-logo
Premium
Next generation high‐performance carbon fiber thermoplastic composites based on polyaryletherketones
Author(s) -
Veazey Dustin,
Hsu Tim,
Gomez Enrique D.
Publication year - 2017
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.44441
Subject(s) - materials science , composite material , thermoplastic , aerospace , fiber , polymer , thermoplastic composites , carbon fibers , composite number , law , political science
Interest in carbon fiber reinforced composites based on polyaryl ether ketones (PAEKs) continues to grow, and is driven by their increasing use as metal replacement materials in high temperature, high‐performance applications. Though these materials have seen widespread use in oil, gas, aerospace, medical and transportation industries, applications are currently limited by the thermal and mechanical properties of available PAEK polymer chemistries and their carbon fiber composites as well as interfacial bonding with carbon fiber surfaces. This article reviews the state of the art of PAEK polymer chemistries, mechanical properties of their carbon fiber reinforced composites, and interfacial engineering techniques used to improve the fiber‐matrix interfacial bond strength. We also propose a roadmap to develop the next generation of high‐performance long fiber thermoplastic composites based on PAEKs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44441.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here