z-logo
Premium
Toughening of polylactide via in situ formation of polyurethane crosslinked elastomer during reactive blending
Author(s) -
Zhao Xipo,
Ding Zheng,
Lin Qiang,
Peng Shaoxian,
Fang Pengfei
Publication year - 2017
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.44383
Subject(s) - materials science , polyurethane , ultimate tensile strength , elastomer , composite material , elongation , polyol , copolymer , isocyanate , izod impact strength test , fourier transform infrared spectroscopy , polyester , polymer , chemical engineering , engineering
Polylactide (PLA)/polyurethane (PU) composites were prepared by reactive blending method with in situ formation of PU particles via the reaction between polyester polyol (PPG) and toluene‐2,4‐diisocyanate (TDI). The interfacial compatibility and adhesion between the PLA and PU phases were greatly improved by the reaction of the terminal hydroxyl groups of PLA and NCO groups of TDI forming graft copolymer, as confirmed by FTIR spectroscopy. The elongation at break and notch impact strength of PLA/PU composites increased considerably with increasing PU content, and the tensile strength of PLA/PU composites decreased slightly compared with that of pure PLA. Upon addition of 12 wt % PU, the elongation at break and notch impact strength increased to 175.17% and 10.96 kJ/m 2 , respectively, about 27 times and 5.4 times greater than the corresponding values for the pure PLA. The tensile strength decreased only slightly to 48.65 MPa. The excellent interfacial adhesion, the dispersed PU elastomeric particles acting as stress concentration areas, and the triggering of large matrix shear yield as well as many fibrils by internal cavitation were the main mechanical toughening mechanisms. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44383.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here