z-logo
Premium
Effect of an alkalized‐modified halloysite on PLA crystallization, morphology, mechanical, and thermal properties of PLA/halloysite nanocomposites
Author(s) -
Guo Jianhua,
Qiao Junxia,
Zhang Xin
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.44272
Subject(s) - halloysite , nanocomposite , materials science , crystallinity , ultimate tensile strength , thermal stability , crystallization , composite material , chemical engineering , engineering
Poly(lactic acid) (PLA)/alkalized halloysite nanotube (HNTa) nanocomposites were prepared by melt mixing. The morphology, crystallization behavior, mechanical properties, and thermal stability of the nanocomposites were investigated in comparison with those of the pristine PLA. HNTa can nucleate PLA, leading to a lower recrystallization temperature and higher crystallinity. Infrared spectra revealed that the hydroxyl groups of the PLA interacted with the external hydroxyl groups of HNTa nanofillers via hydrogen bonding. The thermal stability of the nanocomposites was improved with the addition of HNTa. The PLA/HNTa nanocomposites exhibited higher modulus and tensile strength than those of the PLA composites containing unmodified halloysite nanotubes (HNTs). The improvement in properties was probably due to a better dispersion of the HNTa in the PLA matrix compared to that of the unmodified HNTs. Therefore, the facile alkali treatment of HNTs offers a low cost nanofiller for the preparation of PLA based nanocomposites with high tensile modulus and tensile strength. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 44272.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here