Premium
Sustainable biocomposites from biobased polyamide 6,10 and biocarbon from pyrolyzed miscanthus fibers
Author(s) -
Ogunsona Emmanuel O.,
Misra Manjusri,
Mohanty Amar K.
Publication year - 2017
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.44221
Subject(s) - biocomposite , materials science , izod impact strength test , ultimate tensile strength , composite material , flexural strength , heat deflection temperature , nylon 6 , polyamide , particle size , flexural modulus , composite number , polymer , chemical engineering , engineering
The reinforcing effects of biocarbon of varying particle size ranges (crushed, <500, 500–426, 250–213, and <63 µm) on biobased polyamide 6,10 (PA 6,10) at 20 wt % loading were investigated for the resulting biocomposites. The heat deflection temperature and impact strength were observed to increase with reduction in particle size. Also, a 200% increase in the impact strength was observed in the biocomposite with biocarbon particles sized at <63 µm when compared to that with <500 µm. A 50% and 83% increase in the tensile and flexural moduli of the biocomposite with biocarbon particle size of <500 µm was observed, respectively, while the tensile strength was observed to remain unchanged. The flexural strength of the biocomposites was improved by 61% when compared to neat nylon. These results were due to good wetting, dispersion and increased surface area of the biocarbon within the nylon matrix. These results show the potential of biocarbon as reinforcing filler in nylon for applications especially in the automotive industry. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44221.