z-logo
Premium
Microstructural, wetting, and dielectric properties of plasma polymerized polypyrrole thin films
Author(s) -
Koduru Hari Krishna,
Marino Lucia,
Vallivedu Janardhanam,
Choi ChelJong,
Scaramuzza Nicola
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.43982
Subject(s) - polypyrrole , wetting , materials science , dielectric , plasma polymerization , composite material , plasma , thin film , polymerization , chemical engineering , polymer chemistry , nanotechnology , polymer , optoelectronics , physics , quantum mechanics , engineering
ABSTRACT Polypyrrole (PPy) thin films were synthesized by plasma polymerization technique and investigated the influence of discharge power on microstructural, optical, surface wettability, and dielectric properties of grown films. As deposited PPy films were characterized by X‐ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR), Atomic force microscopy, UV‐VIS spectroscopy and dielectric spectroscopy. The broad XRD peak present at 2θ = 23.5° revealed the amorphous nature of grown PPy films. The FTIR spectra displayed characteristic peaks in the wavenumbers regions 3300–3400 cm −1 and 1635–1700 cm −1 and respective peaks intensities decreased slightly as a function of discharge powers. Significant modifications in surface morphology of the films were observed as a function of discharge powers and PPy films synthesized at higher discharge power of 50 W demonstrated characteristic surface morphology composed of characteristic vertical cone shaped clusters provided with rms roughness of 3.42 nm. The UV‐VIS absorption spectra evidenced that the optical density values varied as a function of discharge power. The evaluated band gap energies decreased with an increase of discharge power and found to be 2.53 eV for PPy films prepared at higher discharge power of 50 W. The surface wettability studies evidenced that as prepared PPy films were found to be hydrophilic in nature. The dielectric measurements were carried out for “ITO/polymer/ITO” structures in the frequency range 10 mHz to 100 kHz. As evidenced from dielectric spectroscopic measurements, PPy films synthesized at 50 W were demonstrated conductivity value of 6.0 × 10 −12 S/m. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43982.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here