Premium
Flexible polyurethane foams modified with biobased polyols: Synthesis and physical‐chemical characterization
Author(s) -
Soto G. D.,
Marcovich N. E.,
Mosiewicki M. A.
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.43833
Subject(s) - polyol , polyurethane , materials science , transesterification , fourier transform infrared spectroscopy , performic acid , dynamic mechanical analysis , chemical engineering , polymer chemistry , hydroxyl value , characterization (materials science) , glycerol , polymer , organic chemistry , composite material , chemistry , catalysis , engineering , nanotechnology
A series of flexible polyurethane foams with different polyol compositions were synthesized through the replacement of a portion of the petroleum‐based polyether polyol with biobased polyols, namely, glycerol (GLY) and hydroxylated methyl esters (HMETO). HMETO was synthesized by the alkaline transesterification of tung oil (TO; obtaining GLY as a byproduct) and the subsequent hydroxylation of the obtained methyl esters with performic acid generated in situ . FTIR spectroscopy, 1 H‐NMR, and different analytical procedures indicated that the hydroxyl content increased significantly and the molecular weight decreased with respect to those of the TO after the two reaction steps. The characterization of the obtained foams, achieved through the measurement of the characteristic reaction times, thermal and dynamic mechanical analysis, scanning electronic microscopy, and density measurements, is reported and discussed. The most important changes in the modified foams were found with the addition of GLY to the formulation; this led to an increased foam density and storage rubbery modulus, which were associated with a higher crosslinking density because of the decrease in the chain length between crosslinking points. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43831.