z-logo
Premium
ABS/HIPS blends obtained from WEEE: Influence of processing conditions and composition
Author(s) -
de Souza Adriana Martinelli Catelli,
Cucchiara Mayara Gallego,
Ereio Adriana Vitório
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.43831
Subject(s) - materials science , extrusion , composite material , izod impact strength test , ultimate tensile strength , molding (decorative) , polybutadiene , particle size , acrylonitrile butadiene styrene , modulus , polystyrene , elongation , dynamic mechanical analysis , polymer , copolymer , chemical engineering , engineering
The recycling of acrylonitrile–butadiene–styrene (ABS) and high‐impact polystyrene (HIPS) from postconsumer electronic equipment housing was investigated. A preliminary study of shot size and particle size effects on the mechanical properties of ABS/HIPS (50/50) blends obtained directly via injection molding was conducted. Injection‐molded specimens of ABS/HIPS blends, obtained at different compositions with or without previous extrusion, were subjected to mechanical, thermal, and morphological testing. Preliminary studies showed that a smaller particle size resulted in higher tensile and impact strength, regardless of the shot size used during injection molding. ABS/HIPS blends obtained using previous extrusion presented a slight increase in Young's modulus and a decrease in elongation at break and impact strength. The increase in glass‐transition temperature related to the Polybutadiene (PB) phases of these blends indicated a possible increase in crosslinking structures during extrusion. In addition, these blends showed a coarse and heterogeneous morphology, suggesting that ABS did not completely mix with HIPS. Compared to processing conditions, the blend composition appeared to have a much stronger effect on the mechanical properties. The results obtained suggest the possibility of obtaining ABS/HIPS blends directly via injection molding as long as small ground particles are used. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43831.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom