Premium
Tensile behavior of polyolefin composites: the effect of matrix parameters
Author(s) -
Guseva Maria,
Gerasin Victor,
Shklyaruk Boris
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.43819
Subject(s) - materials science , polyolefin , composite material , ultimate tensile strength , crystallinity , filler (materials) , brittleness , elongation , polymer , layer (electronics)
Polyolefin composites were prepared from 14 PE matrices and three different mineral fillers (montmorillonite, palygorskite and glass microspheres) via melt compounding in an extruder. Mechanical properties of the obtained systems were analyzed with emphasis on elongation at break and conditions for ductile/brittle failure were determined. When filler content is raised beyond a certain “critical” value, tensile properties are dramatically altered and transition occurs from ductile behavior to brittle fracture. This transition is displayed by a well‐defined “step” on the plot of strain at break versus concentration of particles. The value of “critical filler content” was found to depend mainly on level of crystallinity of a matrix while other parameters (chemical nature of filler particles, their size, shape and surface treatment) are less significant. “Critical filler content” will decrease with growth of crystallinity of a polymer and with highly crystalline HDPEs it is as low as 2–8 vol %. Otherwise, with noncrystallizing and low‐crystalline polymers elongation at break decreases gradually with concentration of mineral particles and ductile type deformation is maintained at fairly large filler fractions. The results presented here will be useful for a proper selection of a matrix polymer in composites with mineral fillers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43819.