Premium
Antisolvent crystallization and solid‐state polymerization of bisphenol‐A polycarbonate
Author(s) -
Chang Xuesong,
Ding Tongmei,
Tian Hengshui,
Wang Tiantian
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.43636
Subject(s) - crystallinity , crystallization , prepolymer , materials science , chemical engineering , polymerization , polymer chemistry , scanning electron microscope , differential scanning calorimetry , polymer , composite material , polyurethane , physics , engineering , thermodynamics
Bisphenol‐A polycarbonate (BAPC) was synthesized by solid‐state polymerization (SSP) using a semicrystalline prepolymer crystallized by antisolvent method. The antisolvent crystallization was investigated as a function of antisolvent types using X‐ray diffraction (XRD), different scanning calorimetry (DSC), and scanning electron microscopes (SEM). The results showed antisolvent types had a significant effect on the crystallization of BAPC. Prepolymer induced by acetone as an antisolvent gained a higher crystallinity of 37.0%, more uniform particle size, and mature crystal structure compared with the samples crystallized by methanol and ethanol. Then crystallization of BAPC by acetone was carried out at crystallization temperature in the range of 40–80 °C for 1–5 h. A high crystallinity of 42.0% was acquired with the crystallization conducted at 70 °C for 2 h. Prepolymer with appropriate crystallinity of 37.8% resulted in high‐molecular‐weight polymer of 57,411 via SSP due to the effect of crystallinity and plasticization of residual solvent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43636.