Premium
Surface modification of polypropylene by the entrapping method using the short‐chained stearyl‐alcohol poly(ethylene oxide) ether modifier
Author(s) -
Guo Haofei,
Huang Juexin,
Ye Yuansong,
Huang Jian,
Wang Xiaolin
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.43607
Subject(s) - ethylene oxide , surface modification , materials science , polypropylene , polymer chemistry , oxide , contact angle , chemical engineering , ether , propylene oxide , covalent bond , ethylene glycol , copolymer , polymer , chemistry , composite material , organic chemistry , metallurgy , engineering
On the basis of the short‐chained modifier of stearyl‐alcohol poly(ethylene oxide) ether (AEO), an entrapping modification was carried out on the polypropylene (PP) surface for hydrophilic improvement. A swelling layer was confirmed locating in the amorphous region on the PP surface, from which the modifiers could penetrate into the surface. The AEO‐8 modifier achieved the optimal hydrophilic modification on the surface with a contact angle of 20.6° and modifier coverage of 19.2%. A microphase separation was speculated to occur between the poly(ethylene oxide) (PEO) chain of AEO and the PP substrate in the entrapping surface, after which surface‐enriched PEO chains could improve surface hydrophilicity, simultaneously, reserved stearyl chains in the surface could approach modifier fixation. Water immersion durability of the modified surface could be improved by establishing a covalent linkage in the surface‐fixed structure. This work gives more comprehensive insights in the entrapping modification on the semi‐crystalline PP surface based on the short‐chained and block modifier. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43607.