Premium
Poly(lactic acid) biocomposites reinforced with ultrafine bamboo‐char: Morphology, mechanical, thermal, and water absorption properties
Author(s) -
Qian Shaoping,
Sheng Kuichuan,
Yao Wenchao,
Yu Hui
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.43425
Subject(s) - materials science , biocomposite , crystallinity , ultimate tensile strength , composite material , absorption of water , izod impact strength test , lactic acid , char , composite number , chemical engineering , pyrolysis , genetics , biology , bacteria , engineering
In this study, ultrafine bamboo‐char (BC) was introduced into poly(lactic acid) (PLA) matrix to improve mechanical and thermal properties of PLA based biodegradable composites. PLA/BC biocomposites were fabricated with different BC contents by weight. Uniform dispersion of BC in the PLA matrix and good interaction via physical and chemical interfacial interlocks were achieved. The maximum tensile strength and tensile modulus values of 14.03 MPa and 557.74 MPa were obtained when 30% BC was used. Impact strength of the biocomposite with 30% BC was increased by 160%, compared to that of pure PLA. DSC analysis illustrated that PLA/BC biocomposites had a better thermal property. Crystallization temperature decreased and maximal crystallinity of 30.30% was observed with 30% BC load. We did not notice significant thermal degradation differences between biocomposites with different BC loadings from TGA. Better water resistance was obtained with the addition of BC. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43425.