z-logo
Premium
Synthesis and characterization of PMMA composites activated with starch for immobilization of L ‐asparaginase
Author(s) -
Ulu Ahmet,
Koytepe Suleyman,
Ates Burhan
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.43421
Subject(s) - starch , thermal stability , materials science , immobilized enzyme , methyl methacrylate , composite material , polymerization , chemical engineering , polymer chemistry , polymer , enzyme , chemistry , organic chemistry , engineering
Poly (methyl methacrylate) (PMMA)–starch composites were prepared by emulsion polymerization technique for L‐asparaginase (L‐ASNase) immobilization as highly activated support. The hydroxide groups on the prepared composites offer a very simple, mild and firm combination for enzyme immobilization. The pure PMMA and PMMA‐starch composites were characterized as structural, thermal and morphological. PMMA‐starch composites were found to have better thermal stability and more hydrophilic character than pure PMMA. L‐ASNase was immobilized onto PMMA‐starch composites contained the different ratio of starch (1, 3, 5, and 10 wt %). Immobilized L‐ASNase showed better performance as compared to the native enzyme in terms of thermal stability and pH. K m value of immobilized enzyme decreased approximately eightfold compared with the native enzyme. In addition to, immobilized L‐ASNase was found to retain 60% of activity after 1‐month storage period at 4 °C. Therefore, PMMA‐starch composites can be provided more advantageous in terms of enzymatic affinity, thermal, pH and storage stability as L‐ASNase immobilization matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43421.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here