Premium
Synthesis of a perfluorooctanoic acid molecularly imprinted polymer for the selective removal of perfluorooctanoic acid in an aqueous environment
Author(s) -
Cao Fengmei,
Wang Lei,
Ren Xinhao,
Sun Hongwen
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.43192
Subject(s) - adsorption , perfluorooctanoic acid , chemistry , molecularly imprinted polymer , ethylene glycol dimethacrylate , aqueous solution , nip , sorption , precipitation polymerization , langmuir adsorption model , desorption , polymerization , selective adsorption , chromatography , nuclear chemistry , polymer , selectivity , organic chemistry , radical polymerization , materials science , methacrylic acid , catalysis , composite material
Perfluorooctanoic acid (PFOA) contamination in the environment is a global problem. The aqueous phase is the main medium for PFOA because of its moderate solubility. Adsorption is a feasible way to remove PFOA because of its chemical and biological stability. In this study, a new type of molecularly imprinted polymer (MIP) for the selective adsorption of PFOA in aqueous solutions was synthesized by the precipitation polymerization method with PFOA as the template molecule after optimization. The adsorption kinetics and isotherms of the MIP adsorbent toward PFOA were studied, and the effects of the pH and cations on the adsorption were investigated with batch experiments. The results show that acrylamide (AAM) was the best functional monomer, and the optimal molar ratio of PFOA to AAM to ethylene glycol dimethacrylate (crosslinker) was 1:6:25. The optimized MIP adsorbent had a high affinity for PFOA, and the uptake percentage by the MIP adsorbent was 1.3–2.5 times that of the nonimprinted polymer (NIP) when PFOA existed alone. A maximum PFOA sorption capacity of 5.45 mg/g based on the Langmuir isotherm model was achieved with the MIP adsorbent. The MIP adsorbent exhibited a high selectivity for PFOA over competitive compounds (other perfluorinated alkyl carboxylic and sulfonic acids), whereas the NIP did not. Approximately 90% of the PFOA in the mixture was removed by the MIP adsorbent; this was 18 times that of the NIP. Moreover, the regenerability of the MIP adsorbent was confirmed in five sequential adsorption–desorption cycles without a significant reduction in the PFOA uptake. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43192.