Premium
Cyclopentadiene‐functionalized polyketone as self‐cross‐linking thermo‐reversible thermoset with increased softening temperature
Author(s) -
Toncelli Claudio,
Bouwhuis Stephan,
Broekhuis Antonius Augustinus,
Picchioni Francesco
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42924
Subject(s) - thermosetting polymer , softening , cyclopentadiene , materials science , polymer chemistry , softening point , composite material , organic chemistry , chemistry , catalysis
Self‐cross‐linkable thermo‐reversible thermosets were obtained by a two‐steps post‐functionalization of aliphatic alternating polyketones yielding two different cyclopentadiene functionalization degree of 9 and 22% (with the respect of initial 1,4‐dicarbonyl units). Thermo‐reversibility was verified by gelation experiments and differential scanning calorimetry (DSC) scans displayed a broad transition varying from 75–100°C till 160°C that can be related to retro‐Diels Alder de‐bonding of the dicyclopentadienyl moieties. The dynamic mechanical thermal (DMTA) analysis showed the complete thermo‐mechanical recovery of the material up to six thermal cycles with a softening temperature around 210°C, thereby ensuring a suitable application window for high‐temperature resistant thermosets. Independently of the exact mechanism at the molecular level and in addition to previous studies which used the same Diels‐Alder diene‐dienophile system, it must be noticed that all prepared materials retained their mechanical behavior during at least six consecutive thermal cycles, thus indicating the re‐workability of the system. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 42924.