Premium
Preparation and properties of octadecylamine modified graphene oxide/styrene‐butadiene rubber composites through an improved melt compounding method
Author(s) -
Wang Chunwei,
Liu Zijin,
Wang Shifeng,
Zhang Yong
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42907
Subject(s) - compounding , styrene butadiene , natural rubber , materials science , composite material , composite number , ultimate tensile strength , scanning electron microscope , graphene , elongation , oxide , polymer , styrene , copolymer , nanotechnology , metallurgy
Octadecylamine modified graphene oxide/styrene‐butadiene rubber (GO‐ODA/SBR) composites are prepared by a novel and environmental‐friendly method called “Improved melt compounding”. A GO‐ODA/ethanol paste mixture is prepared firstly, and then blended with SBR by melt compounding. GO‐ODA sheets are uniformly dispersed in SBR as confirmed by scanning electron microscope, transmission electron microscopy, and X‐ray diffraction. The interfacial interaction between GO‐ODA and SBR is weaker than that between GO and SBR, which is proved by equilibrium swelling test and dynamic mechanical analysis. GO‐ODA/SBR show more pronounced “Payne effect” than GO/SBR composites, indicating enhanced filler networks resulted from the modification of GO with ODA. GO‐ODA/SBR composite has higher tensile strength and elongation at break than SBR and GO/SBR composite. The tensile strength and elongation at break for the composite with 5 parts GO‐ODA per hundred parts of rubber increase by 208% and 172% versus neat SBR, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 42907.