Premium
Electrospun biodegradable nanofibers scaffolds for bone tissue engineering
Author(s) -
Khajavi Ramin,
Abbasipour Mina,
Bahador Abbas
Publication year - 2016
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42883
Subject(s) - polycaprolactone , electrospinning , polylactic acid , materials science , tissue engineering , nanofiber , gelatin , scaffold , surface modification , biomaterial , polyester , bone tissue , chitosan , polymer , adhesion , chemical engineering , biomedical engineering , chemistry , nanotechnology , composite material , organic chemistry , medicine , engineering
Many polymeric materials have been developed and introduced for bone regeneration. Especially, their nanofibrous forms are mostly applied for artificial extracellular matrices. Polymeric materials in their nanofibrous form show some potent properties such as high surface‐to‐volume ratio, tunable porosity, and ease of surface functionalization. Benefiting from the properties of their main polymer and additives, they can provide new opportunities for cell seeding, proliferation, and new 3D‐tissue formation. This article focuses on most cited polymeric nanofibrous scaffolds fabricated by electrospinning and recent achievements. They were divided into two main categories: natural (collagen, silk, keratin, gelatin, chitosan, and alginate) and synthetic (e.g., polycaprolactone, polylactic acid, and polyglycolic acid) polymers. The role of several additives like hydroxyapatite, bone morphogenetic proteins (BMPs), tricalcium phosphate, and collagen type I in improving the adhesion, differentiation, and tissue formation of stem cells were discussed. Finally, the osteogenic capacity and ability of nanofibrous scaffolds to support the growth of clinically relevant bone tissue were briefly studied. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 42883.