z-logo
Premium
Study on the effect of woven sisal fiber mat on mechanical and viscoelastic properties of petroleum based epoxy and bioresin modified toughened epoxy network
Author(s) -
Sahoo Sushanta K.,
Mohanty Smita,
Nayak Sanjay K.
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42699
Subject(s) - epoxy , materials science , composite material , composite number , dynamic mechanical analysis , toughness , sisal , dynamic modulus , fiber , polymer
Sisal fiber reinforced biocomposites are developed using both unmodified petrol based epoxy and bioresin modified epoxy as base matrix. Two bioresins, epoxidized soybean oil and epoxy methyl soyate (EMS) are used to modify the epoxy matrix for effective toughening and subsequently two layers of sisal fiber mat are incorporated to improve the mechanical and thermomechanical properties. Higher strength and modulus of the EMS modified epoxy composites reveals good interfacial bonding of matrix with the fibers. Fracture toughness parameters K IC and G IC are determined and found to be enhanced significantly. Notched impact strength is found to be higher for unmodified epoxy composite, whereas elongation at break is found to be much higher for modified epoxy blend. Dynamic mechanical analysis shows an improvement in the storage modulus for bioresin toughened composites on the account stiffness imparted by fibers. Loss modulus is found to be higher for EMS modified epoxy composite because of strong fiber–matrix interfacial bonding. Loss tangent curves show a strong influence of bioresin on damping behavior of epoxy composite. Strong fiber–matrix interface is found in modified epoxy composite by scanning electron microscopic analysis. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42699.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here