Premium
Ethanol organosolv lignin as a reactive filler for acrylamide‐based hydrogels
Author(s) -
Xue BaiLiang,
Wen JiaLong,
Sun RunCang
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42638
Subject(s) - self healing hydrogels , organosolv , polymer chemistry , swelling , fourier transform infrared spectroscopy , materials science , polymerization , polymer , chemical engineering , acrylamide , acrylic acid , radical polymerization , depolymerization , ultimate tensile strength , lignin , nuclear chemistry , chemistry , composite material , monomer , organic chemistry , engineering
Hydrogels based on acrylamide (AM) and ethanol organosolv lignin (EOL) with high swelling and good mechanically elastic properties were synthesized in an alkaline solution. EOL was used as a reactive filler for the preparation of AM‐based hydrogels. The impact of EOL addition on the physicochemical properties of AM‐based hydrogels was investigated using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy, and their mechanical properties were examined. The water swelling ratio of the prepared hydrogels increased with the increase of EOL content, and their maximum swelling ratio could reach up to 180. Mechanical measurements indicated that their tensile strength was highly dependent on the amount of EOL, and their elongation at break reached up to 1400%. The formation mechanism of EOL composite hydrogels was probably that most of AM was synthesized into the crosslinked poly(acrylic amide) network, and small quantities of AM was hydrolyzed to acrylic acid ions under alkaline condition. The chain transfer of free radicals from AM and/or AA to EOL molecules occurred in the polymerization process. With increasing EOL content in the hydrogels, an interpenetrating polymer network might be mainly formed by the hydrogen bonding between EOL and AA and/or AM molecules. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42638.