z-logo
Premium
Property reinforcement of silicone dielectric elastomers filled with self‐prepared calcium copper titanate particles
Author(s) -
Wang Gen Lin,
Zhang Yi Yang,
Duan Lei,
Ding Ke Hong,
Wang Zhi Feng,
Zhang Ming
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42613
Subject(s) - materials science , composite material , dielectric , elastomer , silicone , polydimethylsiloxane , dielectric loss , ceramic , copper , optoelectronics , metallurgy
In this article, submicron and micron calcium copper titanate (CCTO) crystallites with different morphologies were successfully designed and prepared by directly thermal treatment method and molten salt method, respectively. Then, the silicone elastomer filled with self‐prepared CCTO particles had high dieletric constant, low dielectric loss, and actuated strain which was greatly improved at low electric field. The dieletric constant at 50 Hz obviously increased from 2.15 for pure silicone elastomer to 4.37 and 4.18 for the submicron and micron CCTO/poly (dimethyl siloxane) (PDMS) composites. The dielectric loss of the composites retained at a low value (less than 0.06). Meanwhile, the elastic modulus of CCTO/PDMS composites was increased slightly only with a good flexibility. Compared to pure silicone elastomer (2.25%), the submicron and micron CCTO/PDMS composites with 2 wt % content exhibited a greater strain of 7.69% and 9.83% at a low electric field of 5 V/μm. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42613.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here