z-logo
Premium
An in situ intercalative polymerization method for preparing UV curable clay–polymer nanocomposites
Author(s) -
Pavlacky Erin,
Webster Dean C.
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42601
Subject(s) - materials science , nanocomposite , polymerization , montmorillonite , in situ polymerization , polymer chemistry , polymer , curing (chemistry) , polymer clay , polyamide , monomer , chemical engineering , polyurethane , composite material , engineering
A novel in situ intercalative polymerization technique was used to disperse clay mineral in a precursor resin for use in UV curing by performing an in situ ion exchange reaction during polyesterification. Unmodified montmorillonite (MMT) was added to a reaction mixture composed of monomers and methyl, tallow, bis‐2‐hydroxyethyl ammonium (MTEtOH) during the synthesis of unsaturated polyesters to create resins containing highly dispersed, organically modified MMT. UV‐curable clay–polymer nanocomposite (CPN) films were then prepared utilizing donor–acceptor chemistry through reactions of the unsaturated polyester resin with triethylene glycol divinyl ether. Functional group conversion improved up to 15% by the incorporation of clay mineral into the polymer matrix through the in situ polymerization method. The CPNs also had improved barrier, mechanical, and thermal properties over a control film containing no clay mineral. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42601.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here