Premium
In‐situ grown silica/water‐borne epoxy shape memory composite foams prepared without blowing agent addition
Author(s) -
Dong Yubing,
Fu Yaqin,
Ni QingQing
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42599
Subject(s) - materials science , epoxy , composite material , composite number , scanning electron microscope , blowing agent , transmission electron microscopy , polyurethane , nanotechnology
Shape memory (SM) silica/epoxy composite foams were successfully synthesized via latex technology and prepared without blowing agent addition. Silica was synthesized via tetraethoxysilane (TEOS) hydrolysis. Silica/epoxy foams were obtained from the TEOS solution and water‐borne epoxy mixtures after freeze‐drying and foaming in the presence of residual moisture as the blowing agent under a vacuum at 110°C. The morphologies of the resulting foams were evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Compression and thermo‐mechanical cycle tests were performed to measure the mechanical and SM properties of the foams. Experimental results indicated that the micrographs and mechanical properties of the foams were closely related to freeze‐drying time. The final composite foams exhibited high shape recovery and fixity ratios and could maintain both properties at more than 90% even after five thermo‐mechanical cycles. The properties obtained in the epoxy foams may offer new opportunities for their use in future structural applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42599.