z-logo
Premium
Role of dual dopants in highly ordered crystalline polyaniline nanospheres: Electrode materials in supercapacitors
Author(s) -
Boddula Rajender,
Srinivasan Palaniappan
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42510
Subject(s) - polyaniline , aniline , supercapacitor , polymerization , materials science , ammonium persulfate , sulfuric acid , methanesulfonic acid , dopant , chemical engineering , mineral acid , aqueous solution , inorganic chemistry , polymer chemistry , chemistry , electrochemistry , electrode , organic chemistry , polymer , composite material , doping , engineering , optoelectronics
Aniline is oxidized by ammonium persulfate oxidant with a weak organic acid, 1,3‐(6,7)‐napthalene trisulfonic acid (NTSA), via an aqueous polymerization pathway to polyaniline (PANI) salt. The effects of the sodium lauryl sulfate surfactant, mineral acid [sulfuric acid (H 2 SO 4 )], and a combination of surfactant with mineral acid in the aniline polymerization reaction are also carried. These salts were designated as PANI–NTSA–dodecyl hydrogen sulfate (DHS), PANI–NTSA–H 2 SO 4 , and PANI–NTSA–DHS–H 2 SO 4 , respectively. Interestingly, PANI–NTSA–DHS showed a highly ordered crystalline sample with a nanosphere morphology. These PANIs were used as electrode materials in supercapacitor applications. Among the four salts, the PANI–NTSA–DHS–H 2 SO 4 material showed higher values of specific capacitance (520 F/g), energy (26 W h/kg), and power densities (200 W/kg) at 0.3 A/g. Moreover, 77% of the original capacitance was retained after 2000 galvanostatic charge–discharge cycles with a Coulombic efficiency of 98–100%. PANI–NTSA–DHS–H 2 SO 4 was obtained in excellent yield with an excellent conductivity (6.8 S/cm) and a thermal stability up to 235°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42510.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom