Premium
Preparation and characterization of transparent and foldable polysiloxane‐poly(methyl methacrylate) membrane with a high refractive index
Author(s) -
Xu Jinku,
Zhu Weiyue,
Zhang Leilei,
Zhang Yongchun
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42491
Subject(s) - materials science , macromonomer , membrane , methyl methacrylate , polymer chemistry , poly(methyl methacrylate) , carbazole , methacrylate , transmittance , chemical engineering , composite material , polymerization , polymer , chemistry , organic chemistry , biochemistry , optoelectronics , engineering
In this article, carbazole‐grafted methacrylic polysiloxane (MA‐CZ‐PDMS) macromonomer was synthesized and its structure was confirmed by proton nuclear magnetic resonance ( 1 H NMR). The polysiloxane macromonomer can homogeneously copolymerize with methyl methacrylate (MMA) to prepare transparent and foldable carbazole‐grafted polysiloxane‐poly(methyl methacrylate) (PDMS‐PMMA) membranes with a high refractive index (RI). The membranes were characterized by light transmittance, RI value, and dynamic mechanical thermal analysis (DMTA). The results indicated that the carbazole‐grafted PDMS‐PMMA membranes had excellent light transmittance that decreased slightly with increasing carbazole‐grafted polysiloxane content. Incorporation of carbazole‐grafted polysiloxane in the materials improved its RI value; however decreased the glass transmission temperature ( T g ) that can be adjusted to less than 30°C, enable the membrane foldable at room temperature. The data demonstrate that the carbazole‐grafted PDMS‐PMMA membranes have a potential application as high RI intraocular lens (IOL) suitable for implantation by minimally invasive surgery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42491.