Premium
Synthesis and application of a natural plasticizer based on cardanol for poly(vinyl chloride)
Author(s) -
Chen Jie,
Liu Zengshe,
Li Ke,
Huang Jinrui,
Nie Xiaoan,
Zhou Yonghong
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42465
Subject(s) - plasticizer , thermogravimetric analysis , cardanol , vinyl chloride , phthalate , acryloyl chloride , thermal stability , dynamic mechanical analysis , materials science , glass transition , polyvinyl chloride , polymer chemistry , chemical engineering , nuclear chemistry , chemistry , organic chemistry , composite material , acrylate , polymer , epoxy , copolymer , engineering
A natural plasticizer with multifunctional groups, similar in structure to phthalates, cardanol derivatives glycidyl ether (CGE) was synthesized from cardanol by a two‐step modification process and characterized by FT‐IR, 1 HNMR, and 13 CNMR. The resulting product was incorporated to PVC (CGE/PVC), and plasticizing effect was compared with PVC incorporated with two kinds of commercial phthalate ester plasticizers bis (2‐ethylhexyl) benzene‐1,4‐dicarboxylate (DOTP) and diisononyl phthalate (DINP). Dynamic mechanical analysis and mechanical properties testing of the plasticized PVC samples were performed in order to evaluate their flexibility, compatibility, and plasticizing efficiency. SEM was employed to produce fractured surface morphology. Thermogravimetric analysis and discoloration tests were used to characterize the thermal stabilities. Dynamic stability analysis was used to test the processability of formulations. Compared with DOTP and DINP plasticized samples, CGE/PVC has a maximum decrease of 9.27% in glass transition temperature ( T g ), a maximum increase of 17.6% in the elongation at break, and a maximum increase of 31.59°C and 25.31 min in 50% weight loss (T50) and dynamic stability time, respectively. The obtained CGE also has slightly lower volatility resistance and higher exudation resistance than that of DOTP and DINP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42465.