Premium
Modification of structural, thermal, and electrical properties of PVA by addition of silicon carbide nanocrystals
Author(s) -
Saini Isha,
Sharma Annu,
Rozra Jyoti,
Dhiman Rajnish,
Aggarwal Sanjeev,
Sharma Pawan K.
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42464
Subject(s) - materials science , nanocomposite , thermogravimetric analysis , fourier transform infrared spectroscopy , scanning electron microscope , transmission electron microscopy , chemical engineering , silicon carbide , raman spectroscopy , thermal stability , nanocrystal , nanocrystalline material , composite material , nanotechnology , physics , optics , engineering
SiC‐PVA nanocomposite films, synthesized using solution‐casting technique were structurally characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. Morphological studies of the SiC‐PVA nanocomposite films were carried out using Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). TEM analysis confirms that the size of SiC nanocrystals present in PVA matrix are 23 ± 9 nm, which is consistent with size calculated using XRD. SiC‐PVA nanocomposite films were further characterized for their thermal and electrical properties. Thermogravimetric/differential thermal analysis (TG/DTA) indicates that the char yield of nanocomposite films containing 3 wt % SiC nanocrystal is ∼30% more than PVA. This increase in char yield is an indication of the potency of flame retardation of SiC‐PVA nanocomposite films. I‐V analysis reveals that Schottky mechanism is the dominant conduction mechanism which is responsible for the increase in conductivity of PVA with the addition of SiC nanocrystals. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42464.