Premium
A facile strategy to fabricate microencapsulated expandable graphite as a flame‐retardant for rigid polyurethane foams
Author(s) -
Zhang XiaoLiang,
Duan HongJi,
Yan DingXiang,
Kang LiQuan,
Zhang WeiQin,
Tang JianHua,
Li ZhongMing
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42364
Subject(s) - polyurethane , glycidyl methacrylate , fire retardant , materials science , composite number , composite material , polymer , emulsion polymerization , fourier transform infrared spectroscopy , epoxy , graphite , emulsion , polymerization , chemical engineering , engineering
A facile strategy is reported for one‐step preparation of reactive microencapsulated expandable graphite (EG) for flame‐retardant rigid polyurethane foams (RPUF), which is based on in situ emulsion polymerization and the use of poly(glycidyl methacrylate) (PGMA) as reactive polymer shell. FTIR and SEM observations well demonstrate the formation of PGMA microencapsulated EG (EG@PGMA) particles. The encapsulation of PGMA shell significantly improves the expandability of EG particles from 42 to 70 mL g −1 . RPUF/EG@PGMA composite with only 10 wt % EG@PGMA loading reaches the UL‐94 V‐0 rating. The limiting oxygen indexes increase remarkably from 21.0 to 27.5 vol %. Additionally, the improved chemical and physical interaction enhance the interfacial bonding between EG and matrix, thus resulting in improved mechanical properties of RPUF/EG@PGMA. These attractive features suggest that the strategy proposed here can serve as a promising means to prepare highly efficient, reactive microencapsulated EG and corresponding good flame‐retarding RPUF with high mechanical properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42364.