z-logo
Premium
Tensile mechanical properties and constitutive model for HTPB propellant at low temperature and high strain rate
Author(s) -
Wang Zhejun,
Qiang Hongfu,
Wang Guang,
Huang Quanzhang
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42104
Subject(s) - materials science , strain rate , composite material , propellant , viscoelasticity , brittleness , deformation (meteorology) , fracture (geology) , ultimate tensile strength , constitutive equation , slow strain rate testing , stress (linguistics) , tearing , thermodynamics , chemistry , linguistics , physics , philosophy , organic chemistry , alloy , finite element method , stress corrosion cracking
To investigate the mechanical properties and fracture mechanisms of hydroxyl‐terminated polybutadiene (HTPB) propellant at low temperature and high strain rate, uniaxial tensile tests were conducted over the range of temperatures 233 to 298 K and strain rates 0.4 to 14.14 s −1 using an INSTRON testing machine, and scanning electron microscope (SEM) was employed to observe the tensile fracture surfaces. The experimental results indicate that the deformation properties of HTPB propellant are remarkably influenced by temperature and strain rate. The characteristics of stress–strain curves at low temperatures are different from that at room temperature, and the effects of temperature and strain rate on the mechanical properties are closely related to the changes of properties and the fracture mechanisms of HTPB propellant. The dominating fracture mechanism depends much on the temperature and changes from the dewetting and matrix tearing at room temperature to the particle brittle fracture at low temperature, and the effect of strain rate only alters the mechanism in a quantitative manner. Finally, a nonlinear viscoelastic constitutive model incorporating the damage evolution and the effects of temperature and strain rate was developed to describe the stress responses of this propellant under the test conditions. During this process, the Schapery‐type constitutive theories were applied and one damage variable was considered to establish the damage evolution function. The overlap between experimental results and predicted results are generally good, which confirms that the developed constitutive model is valid, however, further researches should be done due to some drawbacks in describing the deformation behaviors at very large strain. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42104.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here