Premium
Phase morphology and interfacial characteristics of polycarbonate/acrylonitrile‐ethylene‐propylene‐diene‐styrene blends compatibilized by styrene‐maleic anhydride copolymers
Author(s) -
Li Shengming,
Tang Rong,
Jing Bo,
Dai Wenli,
Zou Xiaoxuan
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42103
Subject(s) - materials science , maleic anhydride , copolymer , differential scanning calorimetry , styrene , fourier transform infrared spectroscopy , polymer chemistry , polycarbonate , small angle x ray scattering , acrylonitrile , polymer blend , composite material , compatibilization , polymer , chemical engineering , scattering , thermodynamics , physics , optics , engineering
ABSTRACT Blends of polycarbonate (PC) and acrylonitrile ‐ ethylene‐propylene‐diene‐styrene (AES) were reactive compatibilized by styrene‐maleic anhydride copolymers (SMA). The changes in phase morphology and interfacial characteristics of the blends as a function of maleic anhydride content of SMA and the concentration of compatibilizer have been systematic studied. The occurrence of reaction between the terminal hydroxyl groups of PC and the maleic anhydride (MA) of compatibilizer was confirmed by fourier transform infrared (FTIR) spectroscopy. A glass transition temperature ( T g ) with an intermediate value between T g (AES) and T g (PC) was found on differential scanning calorimeter (DSC) curves of PC/AES blends compatibilized with SMA contains high levels of MA. Furthermore, at lower compatibilizer content, increase of the compatibilizer level in blends result in decreasing gap between two T g s corresponding to the constituent polymers. Small angle X‐ray scattering (SAXS) test results indicated that compatibilizer concentration for the minimum of blend interface layer's thickness was exactly the same as it was when compatibilized PC/AES blend exhibited optimal compatibility in DSC test. The observed morphological changes were consistent well with the DSC and SAXS test results. A new mechanism of interfacial structural development was proposed to explain unusual phenomena of SMA compatibilized PC/AES blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42103.