Premium
Weld line improvement of short fiber reinforced thermoplastics with a movable flow obstacle
Author(s) -
Janko Marian,
Spiegl Bernhard,
Kaufmann Andreas,
Lucyshyn Thomas,
Holzer Clemens
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.42025
Subject(s) - weld line , materials science , welding , composite material , mold , molding (decorative) , fiber , ultimate tensile strength , compression molding , flexural strength , orientation (vector space) , geometry , mathematics
Short fiber reinforced (SFR) thermoplastics are ideal materials from which to manufacture complex technical parts in high volumes with low energy expenditure. The orientation of the fibers, and hence their reinforcing effect, depends strongly on the nature of the cavity and on the injection molding process. One disadvantage of SFR thermoplastics is a significant decrease in mechanical properties in the areas of the weld lines, due to subopt imal fiber orientation as the melt streams reunite at these points. Common mold‐based and process‐based optimization techniques alter the fiber orientation after the formation of the weld line. The mold‐based approach presented here, on the other hand, operates at the time the weld line is formed: by redirecting the melt streams, it moves the weld line and improves the fiber orientation. A prototype mold is described, and samples produced from it with both standard and modified weld lines are compared with flawless specimens. The new technique yields a large rise in flexural strength and a smaller but significant improvement in tensile properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 42025.