Premium
The effect of an anhydride curing agent, an accelerant, and non‐ionic surfactants on the electrical resistivity of graphene/epoxy composites
Author(s) -
Chiang Tzu Hsuan,
Liu ChunYu,
Lin YaChun
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41975
Subject(s) - epoxy , materials science , curing (chemistry) , composite material , graphene , electrical resistivity and conductivity , differential scanning calorimetry , composite number , oxide , polymer chemistry , nanotechnology , physics , engineering , electrical engineering , metallurgy , thermodynamics
This study investigated different contents of an anhydride curing agent, an accelerant, and non‐ionic surfactants on the electrical resistivity of cured graphene/epoxy composites. The anhydride curing agent was hexahydrophthalic anhydride (HHPA), the accelerant was 2‐ethyl‐4‐methyl‐1H‐imidazole‐1‐propanenitrile (EMIP), and the non‐ionic surfactants were Triton X surfactants with different numbers of polyethylene oxide (PEO) groups ( m ) that influence the electrical resistivity of cured graphene/epoxy composites. During the curing process, differential scanning calorimetry (DSC) was used to determine the effects of the extent of the crosslinking for different contents of the curing agent and how different enthalpy (Δ H ) on the electrical resistivity of the cured graphene/epoxy composites was then generated. The cured graphene/epoxy composite—which consisted of a 1 : 0.85 weight ratio of epoxy resin and anhydride, a 0.5 wt % accelerant, and a 13 wt % graphene powder—had a low electrical resistivity of 11.68 Ω·cm and a thermal conductivity of 1.7 W/m·K. In addition, the cured composites contained a 1.0 wt % polyethylene glycol p‐isooctylphenyl ether (X‐100) surfactant, which effectively decreased their electrical resistivity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 41975