Premium
Films made from polyethylene‐ co ‐acrylic acid and soluble biopolymers sourced from agricultural and municipal biowaste
Author(s) -
Franzoso Flavia,
Causone Damiano,
Tabasso Silvia,
Antonioli Diego,
Montoneri Enzo,
Persico Paola,
Laus Michele,
Mendichi Raniero,
Negre Michele
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41909
Subject(s) - crystallinity , acrylic acid , polyethylene , polymer chemistry , polymer , hydrolysate , chemistry , materials science , biopolymer , organic chemistry , chemical engineering , composite material , hydrolysis , monomer , engineering
Blends were obtained from polyethylene‐ co ‐acrylic acid (PEAA) with 248 kDa molecular weight and two water soluble biopolymers isolated from the hydrolysate of postharvest tomato plant and urban biowaste compost. The two hydrolysates were constituted respectively from a polysaccharide (SP) with 27 kDa molecular weight and a lignin‐like polymer (LP) with 75 kDa molecular weight containing aliphatic and aromatic C moieties substituted by carboxyl, hydroxyl, and amino groups. Evidence was obtained for reactions occurring between the biopolymers and the synthetic polymer leading to new polymers with 151 to 1243 kDa molecular weights. The thermal and mechanical properties of the blends were studied. Compared with neat PEAA, the PEAA‐LP blends containing 5 to 10% LP exhibited 2 to 5× higher molecular weights, 10 to 50% lower crystallinity, 2 to 6× higher Young's modulus, over 3× higher stress at yield point and somewhat lower strain at break (55–280% vs. over 300%). On the contrary the PEAA‐SP blends exhibited 6 to 13% lower crystallinity and the same mechanical properties as neat PEAA. The results offer scope for investigating biopolymers sourced from other biowastes to understand more the reasons of the observed effects and exploit their full potential to modify or to replace synthetic polymers. Perspectives of economic and environmental benefits are discussed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 41909.